
Tetrahedron
Tetrahedron Letters 45 (2004) 4801–4804

Letters
Synthesis and conformation of a novel bridged nucleic acid having a
trans-fused 3,5,8-trioxabicyclo[5.3.0]decane structure
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Abstract—A novel bridged nucleic acid analogue, 20-deoxy-trans-30,40-BNA thymine monomer, was successfully synthesized. An
ab initio calculation and X-ray structure analysis revealed that the trans-fused bicyclo[5.3.0]decane structure of the 20-deoxy-trans-
30,40-BNA effectively constrained the sugar puckering in C20 -endo with appropriate c, d and v angles.
� 2004 Elsevier Ltd. All rights reserved.
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Figure 1. Selected bicyclic and tricyclic nucleoside analogues with

S-type conformation.
The sugar moiety in nucleosides is well known to have
relatively large conformational flexibility. We have
synthesized the nucleic acid analogue, 20,40-BNA1/
LNA,2 of which sugar puckering is exactly restricted to
N-type, and the 20,40-BNA oligonucleotides showed high
binding affinity towards ssRNA3 and dsDNA.4 Thus,
preorganization of a nucleoside sugar moiety in an
appropriate conformation is one promising strategy to
develop nucleic acid analogues with superior binding
ability.

Oligonucleotides containing a nucleoside with S-type
sugar conformation are expected to form a stable duplex
of B-DNA and to be applicable to post-genome tech-
nologies, such as DNA microarray5 and decoy nucleic
acid.6 Therefore, nucleoside analogues with a restricted
S-type sugar conformation have been designed and
synthesized to date (Fig. 1).7–11 Some of them were
introduced into oligonucleotides and the hybridizing
properties were studied. However, these oligonucleotide
analogues showed only moderate increase or consider-
able decrease in the duplex stability, probably due to
insufficient and/or improper restriction of the sugar
conformation. In the B-DNA, the furanose rings are
puckered C20-endo or C30 -exo (S-type), which is also
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tures.
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exhibited by torsion angle d ranged from 79� to 157�,
and the c angle is in the +sc range, 40�–73� (Fig. 2).12 In
addition, the v angle around )100� is one important
characteristic of the B-DNA.12 Thus, besides the S-type
sugar puckering, these torsion angles c, d and v must be
in the appropriate range to prepare an ideal nucleoside
analogue for B-DNA modification.

Recently, we synthesized an S-type nucleoside analogue,
trans-30,40-BNA 1,13 of which sugar puckering was re-
stricted to C30 -exo (Fig. 3). However, a trans-fused six-
membered ring of 1 causes large d angle (174.6�), and the
steric hindrance of the 20-substituent group results in
low reactivity of 30-OH (data not shown).14 Here, we
would like to describe the synthesis and structure of a
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Figure 3. Structure of trans-30,40-BNA and 20-deoxy-trans-30,40-BNA.
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Figure 2. The range of torsion angles c, d and v for the B-DNA.12
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novel S-type nucleoside analogue, 20-deoxy-trans-30,40-
BNA 2, which lacks 20-substituents and has a trans-fused
seven-membered ring containing a methylene acetal to
adjust the d angle.

At first, an ab initio calculation using 3-21G(*) basis
set15 for the 20-deoxy-trans-30,40-BNA 2 was carried out
to evaluate the conformation of the furanose ring and
flexibility of the torsion angles c and v. The results show
that the C20 -endo sugar puckering is the most favorable
with the d angle of 159.4�. The torsion angles c and v in
the optimized structure are 50.0� and )129.3�, respec-
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from 8).
tively, and sufficient flexibility of c and v is also
observed. Thus, it is shown that the 20-deoxy-trans-30,40-
BNA 2 fulfills the conformational criteria for an ideal S-
type nucleoside analogue.

To successfully achieve the synthesis of 20-deoxy-trans-
30,40-BNA, we chose thymidine as starting material
(Schemes 1 and 2). According to the literature,16 thy-
midine was converted in a three-step sequence to the 30-
deoxy-30-C-methylenethymidine derivative 3 (Scheme 1).
Stereoselective catalytic osmium tetraoxide oxidation of
3 gave the diol 4 in 65% yield.17 Protection of the thy-
mine nucleobase in 4 using benzyl chloromethyl ether
(BOMCl) afforded 5 in 89% yield, which was treated
with chloromethyl methyl ether (MOMCl) to obtain 6 in
54% yield. The 30-hydroxy group of 6 was protected with
benzyl group to give 7 in 84% yield. Continuously, de-
protection of the 50-O-trytyl group gave the primary
alcohol 8 in 90% yield. Dess–Martin oxidation of 8
affording the corresponding aldehyde 9 was followed by
an aldol condensation using formaldehyde and reduc-
tion with sodium borohydride to give the diol 10 (63%,
two steps). It was reported that the reaction of a MOM
group with a neighboring hydroxyl group gave a cyclic
methylene acetal under acidic conditions.18 Therefore,
we attempted to construct the trans-fused bicy-
clo[5.3.0]decane structure via a direct seven-membered
ring formation of 11 under acidic conditions (Scheme 2).
Although the formation of desired compound 11 was
not observed, it was interesting that the spiro-type
compound 13 was obtained in 53% yield along with the
cis-fused compound 12 (28%) after sufficient reaction
time at 80 �C.19 This result implies that the cis-fused
compound 12 migrated to the thermodynamically stable
spiro-type compound 13 under the acidic reaction con-
ditions.20 To prevent the formation of cis- and spiro-
type compounds, the 50-hydroxy group in 10 was benz-
ylated to give 14 in 49% yield. Then, the obtained 14
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Table 1. Selected torsion angles, maximum torsion angle (mmax) and

pseudorotation phase angle (P ) in the X-ray structure of 2

m0 (C40–O40–C10–C20) )19.0�
m1 (O40–C10–C20–C30) 40.1�
m2 (C10–C20–C30–C40) )44.5�
m3 (C20–C30–C40–O40) 34.9�
m4 (C30–C40–O40–C10) )10.2�
d (O30–C30–C40–C50) 164.0�
c (C30–C40–C50–O50) )178.8�
v (O40–C10–N1–C2) )126.1�
mmax 44.7�
P 174.2�
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was allowed to react under acidic conditions; however,
this reaction caused partial deprotection of the MOM
group and the desired trans-fused compound 15 was not
obtained. After some trials it was found that an addition
of excess amount of paraformaldehyde under acidic
conditions afforded the trans-fused compound 15 in 47%
yield.21 A Pd-mediated hydrogenolysis successfully gave
the fully deprotected compound 2 in 60% yield.22

The trans-fused structure of 2was confirmed by an X-ray
crystallographic analysis (Fig. 4 and Table 1),23 which
also indicates that the furanose ring of 2 has a typical S-
type conformation, C20-endo puckering (pseudorotation
phase angle P ¼ 174:2�). The maximum torsion angle
Figure 4. ORTEP drawing of 20-deoxy-trans-30,40-BNA monomer 2.
mmax and d angle of 2 are 44.7� and 164.0�, respectively.
These angles are remarkably improved compared with
those of the trans-30,40-BNA 1 (mmax: 51.9� and d:
174.6�)13 and are in good agreement with those of natural
B-DNA. In addition, the v angle of�126.1� is also within
the range of a typical B-type DNA.

In conclusion, we have successfully demonstrated the
synthesis of a novel S-type nucleoside analogue, 20-
deoxy-trans-30,40-BNA 2. By means of ab initio calcu-
lation and X-ray crystallography, 2 was found to fully
satisfy the conformational requirements of B-DNA.
Further studies on 2 and its oligonucleotide derivative
are now in progress.
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