

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 4801-4804

Tetrahedron Letters

Synthesis and conformation of a novel bridged nucleic acid having a *trans*-fused 3,5,8-trioxabicyclo[5.3.0]decane structure

Satoshi Obika, Tomohisa Osaki, Mitsuaki Sekiguchi, Roongjang Somjing, Yasuki Harada and Takeshi Imanishi*

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan

Received 18 February 2004; revised 30 March 2004; accepted 5 April 2004

Abstract—A novel bridged nucleic acid analogue, 2'-deoxy-*trans*-3',4'-BNA thymine monomer, was successfully synthesized. An ab initio calculation and X-ray structure analysis revealed that the *trans*-fused bicyclo[5.3.0]decane structure of the 2'-deoxy-*trans*-3',4'-BNA effectively constrained the sugar puckering in $C_{2'}$ -endo with appropriate γ , δ and χ angles. © 2004 Elsevier Ltd. All rights reserved.

The sugar moiety in nucleosides is well known to have relatively large conformational flexibility. We have synthesized the nucleic acid analogue, 2',4'-BNA¹/LNA,² of which sugar puckering is exactly restricted to N-type, and the 2',4'-BNA oligonucleotides showed high binding affinity towards ssRNA³ and dsDNA.⁴ Thus, preorganization of a nucleoside sugar moiety in an appropriate conformation is one promising strategy to develop nucleic acid analogues with superior binding ability.

Oligonucleotides containing a nucleoside with *S*-type sugar conformation are expected to form a stable duplex of B-DNA and to be applicable to post-genome technologies, such as DNA microarray⁵ and decoy nucleic acid.⁶ Therefore, nucleoside analogues with a restricted *S*-type sugar conformation have been designed and synthesized to date (Fig. 1).^{7–11} Some of them were introduced into oligonucleotides and the hybridizing properties were studied. However, these oligonucleotide analogues showed only moderate increase or considerable decrease in the duplex stability, probably due to insufficient and/or improper restriction of the sugar conformation. In the B-DNA, the furanose rings are puckered C_{2'}-endo or C_{3'}-exo (*S*-type), which is also

Figure 1. Selected bicyclic and tricyclic nucleoside analogues with *S*-type conformation.

exhibited by torsion angle δ ranged from 79° to 157°, and the γ angle is in the +sc range, 40°–73° (Fig. 2).¹² In addition, the χ angle around –100° is one important characteristic of the B-DNA.¹² Thus, besides the S-type sugar puckering, these torsion angles γ , δ and χ must be in the appropriate range to prepare an ideal nucleoside analogue for B-DNA modification.

Recently, we synthesized an *S*-type nucleoside analogue, *trans*-3',4'-BNA 1,¹³ of which sugar puckering was restricted to $C_{3'}$ -exo (Fig. 3). However, a *trans*-fused sixmembered ring of 1 causes large δ angle (174.6°), and the steric hindrance of the 2'-substituent group results in low reactivity of 3'-OH (data not shown).¹⁴ Here, we would like to describe the synthesis and structure of a

Keywords: Nucleic acid analogues; Conformation; X-ray crystal structures.

^{*} Corresponding author. Tel.: +81-6-6879-8200; fax: +81-6-6879-8204; e-mail: imanishi@phs.osaka-u.ac.jp

^{0040-4039/\$ -} see front matter $\odot 2004$ Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.04.082

Figure 2. The range of torsion angles γ , δ and χ for the B-DNA.¹²

Figure 3. Structure of trans-3',4'-BNA and 2'-deoxy-trans-3',4'-BNA.

novel S-type nucleoside analogue, 2'-deoxy-*trans*-3',4'-BNA **2**, which lacks 2'-substituents and has a *trans*-fused seven-membered ring containing a methylene acetal to adjust the δ angle.

At first, an ab initio calculation using 3-21G(*) basis set¹⁵ for the 2'-deoxy-*trans*-3',4'-BNA **2** was carried out to evaluate the conformation of the furanose ring and flexibility of the torsion angles γ and χ . The results show that the C_{2'}-endo sugar puckering is the most favorable with the δ angle of 159.4°. The torsion angles γ and χ in the optimized structure are 50.0° and -129.3°, respec-

tively, and sufficient flexibility of γ and χ is also observed. Thus, it is shown that the 2'-deoxy-*trans*-3',4'-BNA **2** fulfills the conformational criteria for an ideal *S*-type nucleoside analogue.

To successfully achieve the synthesis of 2'-deoxy-trans-3',4'-BNA, we chose thymidine as starting material (Schemes 1 and 2). According to the literature,¹⁶ thymidine was converted in a three-step sequence to the 3'deoxy-3'-C-methylenethymidine derivative 3 (Scheme 1). Stereoselective catalytic osmium tetraoxide oxidation of 3 gave the diol 4 in 65% yield.¹⁷ Protection of the thymine nucleobase in 4 using benzyl chloromethyl ether (BOMCl) afforded 5 in 89% yield, which was treated with chloromethyl methyl ether (MOMCl) to obtain 6 in 54% yield. The 3'-hydroxy group of 6 was protected with benzyl group to give 7 in 84% yield. Continuously, deprotection of the 5'-O-trytyl group gave the primary alcohol 8 in 90% yield. Dess-Martin oxidation of 8 affording the corresponding aldehyde 9 was followed by an aldol condensation using formaldehyde and reduction with sodium borohydride to give the diol 10 (63%), two steps). It was reported that the reaction of a MOM group with a neighboring hydroxyl group gave a cyclic methylene acetal under acidic conditions.¹⁸ Therefore, we attempted to construct the trans-fused bicyclo[5.3.0]decane structure via a direct seven-membered ring formation of 11 under acidic conditions (Scheme 2). Although the formation of desired compound 11 was not observed, it was interesting that the spiro-type compound 13 was obtained in 53% yield along with the cis-fused compound 12 (28%) after sufficient reaction time at 80 °C.19 This result implies that the cis-fused compound 12 migrated to the thermodynamically stable spiro-type compound 13 under the acidic reaction conditions.²⁰ To prevent the formation of *cis*- and spirotype compounds, the 5'-hydroxy group in 10 was benzylated to give 14 in 49% yield. Then, the obtained 14

Scheme 1. Reagents and conditions: (i) OsO_4 , *N*-methylmorpholine-*N*-oxide, pyridine– H_2O -*tert*-BuOH, 75 °C (65%); (ii) BOMCl, DBU, DMF, 0 °C (89%); (iii) MOMCl, *i*-Pr₂NEt, pyridine–ClCH₂CH₂Cl, rt (54%); (iv) NaH, BnBr, *n*-Bu₄NI, DMF, rt (84%); (v) (+)-10-camphorsulfonic acid, CH₂Cl₂–MeOH, rt (90%); (vi) Dess–Martin periodinane, CH₂Cl₂, rt; (vii) 37% H₂CO aq, 1 M NaOH aq, THF, 15 °C, then NaBH₄, THF, 0 °C (63% from **8**).

Scheme 2. Reagents and conditions: (i) *p*-TsOH·H₂O, benzene, reflux (28% for 12, 53% for 13); (ii) NaH, BnBr, DMF, 0 °C (49%); (iii) *p*-TsOH·H₂O, (CH₂O)_n, CICH₂CH₂Cl, reflux (47%); (iv) HCOONH₄, 20%Pd(OH)₂/C, EtOH, reflux (60%).

was allowed to react under acidic conditions; however, this reaction caused partial deprotection of the MOM group and the desired *trans*-fused compound **15** was not obtained. After some trials it was found that an addition of excess amount of paraformaldehyde under acidic conditions afforded the *trans*-fused compound **15** in 47% yield.²¹ A Pd-mediated hydrogenolysis successfully gave the fully deprotected compound **2** in 60% yield.²²

The *trans*-fused structure of **2** was confirmed by an X-ray crystallographic analysis (Fig. 4 and Table 1),²³ which also indicates that the furanose ring of **2** has a typical *S*-type conformation, $C_{2'}$ -endo puckering (pseudorotation phase angle $P = 174.2^{\circ}$). The maximum torsion angle

Table 1. Selected torsion angles, maximum torsion angle (v_{max}) and pseudorotation phase angle (*P*) in the X-ray structure of **2**

1 0 ()	•	
v ₀ (C4'-O4'-C1'-C2')	-19.0°	
v ₁ (O4'–C1'–C2'–C3')	40.1°	
v ₂ (C1'-C2'-C3'-C4')	-44.5°	
v ₃ (C2'–C3'–C4'–O4')	34.9°	
v ₄ (C3'–C4'–O4'–C1')	-10.2°	
δ (O3'-C3'-C4'-C5')	164.0°	
γ (C3'–C4'–C5'–O5')	-178.8°	
χ (O4'-C1'-N1-C2)	-126.1°	
v _{max}	44.7°	
Р	174.2°	

 v_{max} and δ angle of **2** are 44.7° and 164.0°, respectively. These angles are remarkably improved compared with those of the *trans*-3',4'-BNA **1** (v_{max} : 51.9° and δ : 174.6°)¹³ and are in good agreement with those of natural B-DNA. In addition, the χ angle of -126.1° is also within the range of a typical B-type DNA.

In conclusion, we have successfully demonstrated the synthesis of a novel S-type nucleoside analogue, 2'-deoxy-*trans*-3',4'-BNA **2**. By means of ab initio calculation and X-ray crystallography, **2** was found to fully satisfy the conformational requirements of B-DNA. Further studies on **2** and its oligonucleotide derivative are now in progress.

Acknowledgements

We thank M. Shiro (Rigaku Corp) for X-ray crystallographic analysis. Part of this work was supported by the

Figure 4. ORTEP drawing of 2'-deoxy-trans-3',4'-BNA monomer 2.

Japan Securities Scholarship Foundation (JSSF) Academic Research Grant Program, Industrial Technology Research Grant Program in 2000 from New Energy and Industrial Technology Development Organization (NEDO) of Japan, a Grant-in-Aid from the Japan Society for the Promotion of Science, Sunbor Grant from Suntory Institution for Bioorganic Research and a Grant-in Aid from the Ministry of Education, Science, and Culture, Japan. We thank JSPS Research Fellowships for Young Scientist (M.S.).

References and notes

- (a) Obika, S.; Nanbu, D.; Hari, Y.; Morio, K.; In, Y.; Ishida, Y.; Imanishi, T. *Tetrahedron Lett.* **1997**, *38*, 8735– 8738; (b) Imanishi, T.; Obika, S. J. Synth. Org. Chem., Jpn. **1999**, *57*, 969–980; (c) Imanishi, T.; Obika, S. Chem. Commun. **2002**, 1653–1659.
- The 2',4'-BNA is also called 'LNA' by Wengel, J. et al. See: (a) Singh, S. K.; Nielsen, P.; Koshkin, A. A.; Wengel, J. Chem. Commun. 1998, 455–456; (b) Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar, R.; Meldgaard, M.; Olsen, C. E.; Wengel, J. Tetrahedron 1998, 54, 3607–3630; (c) Koshkin, A. A.; Nielsen, P.; Meldgaard, M.; Rajwanshi, V. K.; Singh, S. K.; Wengel, J. J. Am. Chem. Soc. 1998, 120, 13252–13253; (d) Wengel, J. Acc. Chem. Res. 1999, 32, 301–310; (e) Meldgaard, M.; Wengel, J. J. Chem. Soc., Perkin Trans. 1 2000, 3539–3554.
- Obika, S.; Nanbu, D.; Hari, Y.; Andoh, J.; Morio, K.; Doi, T.; Imanishi, T. *Tetrahedron Lett.* **1998**, *39*, 5401–5404.
- (a) Obika, S.; Hari, Y.; Sugimoto, T.; Sekiguchi, M.; Imanishi, T. *Tetrahedron Lett.* **2000**, *41*, 8923–8927; (b) Torigoe, H.; Hari, Y.; Sekiguchi, M.; Obika, S.; Imanishi, T. J. Biol. Chem. **2001**, *276*, 2354–2360; (c) Obika, S.; Uneda, T.; Sugimoto, T.; Nanbu, D.; Minami, T.; Doi, T.; Imanishi, T. Bioorg. Med. Chem. **2001**, *9*, 1001–1011.
- For reviews: (a) Niemeyer, C. M.; Blohm, D. Angew. Chem., Int. Ed. 1999, 38, 2865–2869; (b) Cheung, V. G.; Morley, M.; Aguilar, F.; Massimi, A.; Kucherlapati, R.; Childs, G. Nature Genet. 1999, 21, 15–19; (c) Lockhart, D. J.; Winzeler, E. A. Nature 2000, 405, 827–836.
- For reviews: (a) Cho-Chung, Y. S.; Park, Y. G.; Lee, Y. N. Curr. Opin. Mol. Ther. 1999, 1, 386–392; (b) Morishita, R.; Aoki, M.; Kaneda, Y. Curr. Drug Targets 2000, 1, 15–23.
- (a) Tarköy, M.; Bolli, M.; Schweizer, B.; Leumann, C. *Helv. Chim. Acta* **1993**, *76*, 481–510; (b) Tarköy, M.; Bolli, M.; Leumann, C. *Helv. Chim. Acta* **1994**, *77*, 716–744; (c) Bolli, M.; Trafelet, H. U.; Leumann, C. *Nucleic Acids Res.* **1996**, *24*, 4660–4667.
- (a) Steffens, R.; Leumann, C. J. J. Am. Chem. Soc. 1997, 119, 11548–11549; (b) Steffens, R.; Leumann, C. Helv. Chim. Acta 1997, 80, 2426–2439; (c) Steffens, R.; Leumann, C. J. J. Am. Chem. Soc. 1999, 121, 3249–3255.
- Nielsen, P.; Pfundheller, H. M.; Olsen, C. E.; Wengel, J. J. Chem. Soc., Perkin Trans. 1 1997, 3423–3433.
- Ravn, J.; Thorup, N.; Nielsen, P. J. Chem. Soc., Perkin Trans. 1 2001, 1855–1861.
- Marquez, V. E.; Wang, P.; Nicklaus, M. C.; Maier, M.; Manoharan, M.; Christman, J. K.; Banavali, N. K.; Mackerell, A. D., Jr. *Nucleosides Nucleotides & Nucleic Acids* 2001, 20, 451–459.

- 12. Saenger, W. *Principles of Nucleic Acid Structure*; Springer-Verlag: New York, 1984, and references cited therein.
- Obika, S.; Sekiguchi, M.; Osaki, T.; Shibata, N.; Masaki, M.; Hari, Y.; Imanishi, T. *Tetrahedron Lett.* 2002, 43, 4365–4368; Nielsen, P. et al. independently reported the synthesis of 1 just after our publication. See: Thomasen, H.; Meldgaard, M.; Freitag, M.; Petersen, M.; Wengel, J.; Nielsen, P. *Chem. Commun.* 2002, 1888–1889.
- 14. The phosphitilation at the 3'-hydroxy group of **1** did not proceed efficiently, probably due to the steric hindrance of the 2'-substituent group (data not shown).
- 15. The Spartan[™] version 5.1 molecular orbital package (Wavefunction Inc.) utilizing the HF/3-21G(*) model was used for the ab initio calculations. Numerical calculations were performed on an Octane[™] (SGI) workstation.
- (a) Froehlich, M. L.; Swartling, D. J.; Lind, R. E.; Mott, A. W.; Bergstrom, D. E. *Nucleosides & Nucleotides* 1989, 8, 1529–1535; (b) Sharma, M.; Bobek, M. *Tetrahedron Lett.* 1990, 31, 5839–5842.
- Scheuer-Larsen, C.; Pfundheller, H. M.; Wengel, J. J. Org. Chem. 1995, 60, 7298–7303.
- (a) Pearson, A. J.; Ray, T. *Tetrahedron Lett.* **1986**, *27*, 3111–3114; (b) Powell, N. A.; Roush, W. R. Org. Lett. **2001**, *3*, 453–456.
- 19. Compound 12 and 13 were assigned by comparing with the analogues, which were synthesized through another route.

Selected data for 12: ¹H NMR (CDCl₃) δ 1.97 (3H, d, J = 1 Hz), 2.31 (1H, dd, J = 6, 8 Hz), 2.45 (1H, dd, J = 7, 14 Hz), 2.79 (1H, dd, J = 6, 14 Hz), 3.54 (1H, dd, J = 8, 11 Hz), 3.86 (1H, dd, J = 6, 11 Hz), 3.92 (2H, s), 4.11 (2H, s), 4.57 (2H, s), 4.66, 5.04 (2H, AB, J = 6 Hz), 4.70 (2H, s), 5.49 (2H, s), 6.28 (1H, t, J = 6 Hz), 7.27–7.41 (10H, m), 7.71 (1H, s). MS (EI): m/z 524 (M⁺, 1.0), 91 (100). HRMS (EI): Calcd for C₂₈H₃₂N₂O₈ (M⁺): 524.2153. Found: 524.2158.

Selected data for 13: ¹H NMR (CDCl₃) δ 1.94 (3H, d, J = 1 Hz), 1.96 (1H, dd, J = 9, 15 Hz), 2.76–2.79 (1H, br), 2.85 (1H, dd, J = 5, 14 Hz), 3.71–3.78 (3H, m), 4.03 (1H, dd, J = 8, 13 Hz), 4.17 (1H, dd, J = 1, 12 Hz), 4.49 (1H, br d, J = 12 Hz), 4.57, 4.72 (2H, AB, J = 11 Hz), 4.69 (2H, s), 4.81, 4.95 (2H, AB, J = 6 Hz), 5.47 (2H, s), 6.02 (1H, dd, J = 5, 9 Hz), 7.25–7.38 (11H, m). MS (EI): m/z 524 (M⁺, 2.3), 418 (100). HRMS (FAB): Calcd for C₂₈H₃₃N₂O₈ (M⁺H): 525.2237. Found: 525.2235.

- 20. Treatment of the spiro-type compound 13 under the acidic conditions afforded the *cis*-fused compound 12 (27%) along with the recoverd 13 (45%).
- Nouguier, R.; Gras, J.-L.; Mchich, M. Tetrahedron 1988, 44, 2943–2950.
- 22. Selected data for **2**: mp 244–247 °C (CH₃CN). ¹H NMR (CD₃OD) δ 1.89 (3H, d, J = 1 Hz), 2.36 (1H, dd, J = 6, 13 Hz), 2.48 (1H, dd, J = 9, 12 Hz), 3.73, 4.05 (2H, AB, J = 11 Hz), 3.81, 3.91 (2H, AB, J = 12 Hz), 4.00, 4.15 (2H, AB, J = 12 Hz), 4.85, 5.55 (2H, AB, J = 8 Hz), 6.32 (1H, dd, J = 6, 9 Hz), 8.15 (1H, d, J = 1 Hz). MS (FAB): m/z 315 (M⁺H). HRMS (FAB): Calcd for C₁₃H₁₉N₂O₇ (M⁺H): 315.1192. Found: 315.1216.
- 23. Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Center as supplementary publication numbers CCDC230411. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK [fax: +44(0)-1223-336033 or email: deposit@ccdc.cam.ac.uk].